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Abstract

In dynamics, Saint-Venant�s principle of exponential decay of stress resulting from a self-equilibrating load is not

valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has

been known for a long time, at least since Lamb�s paper [Proc. Roy. Soc. Lon. Ser. A 93 (1916) 114], it was not clear

how to characterize it quantitatively. In this paper we propose a ‘‘probabilistic approach’’ to evaluate the magnitude of

the penetrating stress state. The key point is that, in engineering problems, the distribution of the self-equilibrated load

is usually not known. By assigning to the self-equilibrated load some probabilistic measure one can find probabilistic

characteristics of the penetrating stress state. We develop this reasoning for the simplest case: longitudinal vibrations of

a two-dimensional semi-infinite, elastic isotropic homogeneous strip, excited by a periodic load at the end. We show the

frequency range where Saint-Venant�s principle can be used with good accuracy, and thus, one-dimensional classical

beam theory still can be applied. We characterize also the increase in this range which is achieved in the refined plate

theory proposed by Berdichevsky and Le [J. Appl. Math. Mech. (PMM) 42 (1) (1978) 140].

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Consider a semi-infinite elastic beam, a cylindrical elastic body of arbitrary cross-section, as shown in

Fig. 1. The x-axis is directed along the beam, and axes x1, x2 are in the beam cross-section A, ðx1; x2Þ 2 A;
06 x61. Let the lateral surface of the beam be free of load. At the left end, x ¼ 0, some forces

p ¼ ðp1; p2; pÞ are applied. De Saint-Venant (1885) claimed that, in the case of static load, if the load is self-
equilibrated, i.e. the total force and resultant moment are zero,

Z
A
p1 dA ¼ 0;

Z
A
p2 dA ¼ 0;

Z
A
pdA ¼ 0 ð1:1Þ

Z
A
px1 dA ¼ 0;

Z
A
px2 dA ¼ 0;

Z
A
ðp1x2 � p2x1ÞdA ¼ 0 ð1:2Þ
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then the stress decays fast in the x-direction. This statement is called Saint-Venant�s principle. Neglecting

the stress field caused by the self-equilibrating load reduces the study of the stress state away from the end
to just the study of a two-dimensional elasticity problem on the cross-section A. In more complex cases,

when the forces on the lateral surfaces are not zero, the general three-dimensional elasticity problem away

from the ends can be split into a two-dimensional problem on the cross-section A and a one-dimensional

problem along the beam––the so-called one-dimensional beam theory. Such splitting was presented in an

inexplicit form already in Saint-Venant�s memoir. It was recognized later that the splitting has an as-

ymptotic nature: it is possible if the characteristic length of the changes of stresses along the beam is much

bigger than the characteristic size of the cross section. Many papers contributed to studying various aspects

of the splitting. In the case of general anisotropy and inhomogenuity the splitting was constructed by
Berdichevsky (1981).

The first mathematical proof of Saint-Venant�s principle was given by Toupin (1965). He showed that

the stresses, r, decay exponentially with distance from the loaded end, x as

r ¼ r0 e
�cx ð1:3Þ

The decay rate, c, has the form

c ¼ c0=h ð1:4Þ

where h is a characteristic cross-section dimension and the dimensionless constant c0 depends only on the
cross-section geometry and the elastic moduli. For beams with a full cross-section c0 is of the order of unity,
and the stresses caused by the self-equilibrating load are localized at the vicinity of the beam end, and form

a ‘‘boundary layer’’. There are cross-sectional geometries and inhomogeneous distributions of elastic

moduli for which c0 becomes very small. In such cases one says that Saint-Venant�s principle is violated.

Due to (1.3) and (1.4), for c0 of the order of unity, the two-dimensional elasticity problems in the cross-

section predict the true state of stress in the beam with exponentially small errors, in the order of

expð�c0L=hÞ, where L is the beam length. Toupin�s paper (1965) initiated an explosion of studies on this

subject. We note here Knowles (1966), Knowles and Horgan (1969), Horgan (1974), Berdichevsky (1974,
1976, 1978, 1981), Flavin and Knops (1987, 1988), Flavin et al. (1989), Vafeades and Horgan (1988), Flavin

and Rionero (1993), the review by Horgan and Knowles (1983), and the review updates (Horgan, 1989,

1996). More recent papers have concentrated on situations where the decay rate is slow, as in orthotropic

material by Matemilola and Stronge (1995); in laminated composite structures by Wijeyewickrema et al.

(1996), Baxter and Horgan (1997), Tullini and Horgan (1998); and in thin wall beams Volovoi et al. (1999).

Some related mathematical issues have been discussed by Mielke (1989) and Druz and Ustinov (1996).

Nowadays a complete understanding of the matter has been developed.

The situation in dynamics is much more complex. We will focus here only on the case when the loading is
periodic in time, and do not touch on the related case of impact loading that has been discussed by

Novozhilov and Slepian (1964), Folk and Herczynski (1986), and Rassoulova (2001). The qualitative un-

Fig. 1. Coordinate diagram.
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derstanding of the situation became possible after Lamb�s paper (1916), where all running wave solutions

were obtained for the special case of the elastic isotropic homogeneous strip with stress free boundary.

Running wave solutions posses the following key features, which apply in the general three-dimensional

case. At a given frequency x there are an infinite number of running wave solutions of the form ueiðkx�xtÞ,
where u is a function of the cross-section coordinates. Each solution is characterized by the value of the

wave number k. We will call them modes and also branches. The wave numbers k are the solutions of the

dispersion equation f ðx; kÞ ¼ 0. The wave number k is, in general complex. The real-valued k correspond

to penetrating modes, the complex-valued k to decaying or growing modes. For each x, if there is a solution

with some value of k, there are also solutions corresponding to �k, �kk and ��kk (the bar denotes complex

conjugate).

Consider first the static case, x ¼ 0. For x ¼ 0 there is a multiple root of the dispersion equation k ¼ 0;

all non-zero roots are complex. In the three-dimensional case, the multiplicity of the root k ¼ 0 is six. The
corresponding modes are six independent rigid motions of the beam. The solution for an arbitrary loaded

beam can be sought in the form of a sum of the mode solutions multiplied by arbitrary coefficients. The

coefficients must be found from the boundary conditions at x ¼ 0. One has to include in the sum only

modes with Imk P 0 to provide a solution bounded at infinity. Modes with non-zero k possess a remarkable

property: they are all orthogonal (in energy) to the modes with zero k. This is why imposing six conditions

(1.1) and (1.2) eliminates six non-decaying modes corresponding with k ¼ 0: other modes drop out as

orthogonal to the rigid cross-sectional motions. The situation changes for non-zero frequency x. A

qualitative dispersion picture is shown, for small x in Fig. 2. Six branches appear out of the root k ¼ 0, and
a branch from each complex root. The six branches correspond to low frequency, long wave vibrations of

elastic beams. They are described by classical one-dimensional beam theory. Four of the six branches have

real values of k, two branches grow linearly with k and two grow quadratically with k. The linearly growing

branches correspond to longitudinal and torsional vibrations; the quadratically growing branches corres-

pond to flexural vibrations. Branches with real negative k correspond to the waves moving from right to

left in Fig. 1. We do not consider cases with a source of stress at infinity, thus we do not take these branches

into account subsequently. The remaining two of the six branches have pure imaginary k, and also involve

flexural motions. Though vibrations corresponding to these two branches decay, the decay rate is very small
at low frequency since the branches started from k ¼ 0. For brevity, we will call all six branches penetrating

modes. Along with these penetrating modes, there are branches with complex values of k. Those with

positive imaginary parts are decaying in amplitude with increase in distance from the beam end.

More detailed pictures of dispersion curves can be found; see for example, Mindlin and Medick (1959),

Mason (1964), Gregory and Gladwell (1983), Folk and Herczynski (1986), Meleshko and Tatuyan (1987),

Volovoi et al. (1998), Pagneux and Maurel (2001) and the monograph by Le (1999).

A difficulty in the formulation of a dynamical version of Saint-Venant�s principle is that the modes with

complex k are no longer orthogonal to the penetrating modes. It is not clear how to formulate the con-
ditions that eliminate the penetrating modes. Moreover, as will be seen from what follows, the conditions

Fig. 2. Qualitative form of dispersion curves for low frequencies.
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(1.1) and (1.2) do not prevent the generation of the penetrating modes, or, in other words, a self-equili-

brated dynamic load may cause a penetrating stress state. An unpleasant consequence is that, in general,

one cannot trust the predictions of dynamical one-dimension beam theory that takes into account only the

total force and moment at the beam end.
This paper proposes a quantitative measure for the violation of Saint-Venant�s Principle in dynamics.

We use that the self-equilibrated part of the end load is not usually known in engineering problems.

Therefore we treat the load as random, accept a probabilistic model for randomness and determine the

probabilistic characteristics of the penetrating stress state. It is worth emphasizing that the actual load is

not random, and that randomness only comes into play to model our absence of knowledge of the actual

self-equilibrated part of the load. One may say that the information on the self-equilibrated part of the load

is given in probabilistic terms, as a measure on the space of loads.

To simplify the technical details we focus on the simplest of dynamic problems: excitation of a semi-
infinite elastic isotropic homogeneous strip by harmonic forces applied at the end. We obtain the standard

deviation of the penetrating stress state from zero as a function of frequency x. This allows us to char-

acterize the frequency range for validity of classical beam theory in the problem under consideration. We

evaluate also an expansion of this range achieved in the refined plate theory offered by Berdichevsky and Le

(1980).

The material is organized as follows. In the next three sections we describe an extension of the Lamb

solution for the semi-infinite strip. In Section 5 the probabilistic model is introduced, the method of de-

termining the penetrating stress state outlined and results for symmetric loading presented. The conclusions
drawn from the study are summarized in Section 6.

2. Vibrations of a semi-infinite strip

Consider a semi-infinite strip of homogeneous isotropic material with Lame elastic constants k and l and

density q. It occupies the region xP 0, �h6 y6 h, unbounded in the z direction. The faces y ¼ h and
y ¼ �h are free of traction, the end x ¼ 0 is subjected to a load which changes harmonically with time t at a
frequency x. The load causes normal stresses rxx and ryy and shear stresses rxy with displacements u and v in
the ðx; yÞ-plane. The dynamic behavior is governed by the following equations:

The momentum equations,

orxx

ox
þ orxy

oy
� q

o2u
ot2

¼ 0

orxy

ox
þ oryy

oy
� q

o2v
ot2

¼ 0

ð2:1Þ

the stress–strain relations,

rxx ¼ k
ou
ox

�
þ ov
oy

�
þ 2l

ou
ox

ryy ¼ k
ou
ox

�
þ ov
oy

�
þ 2l

ov
oy

rxy ¼ l
ov
ox

�
þ ou

oy

�
ð2:2Þ

the free boundary conditions at the faces of the strip

ryy ¼ 0; rxy ¼ 0 at y ¼ �h ð2:3Þ
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and the boundary conditions at the strip edge

rxxðy; tÞ ¼ fxxðyÞ cosðxtÞ þ gxxðyÞ sinðxtÞ ð2:4Þ

rxyðy; tÞ ¼ fxyðyÞ cosðxtÞ þ gxyðyÞ sinðxtÞ ð2:5Þ

The functions fxxðyÞ, fxyðyÞ, gxxðyÞ and gxyðyÞ are assumed to be given. There is also a condition that there

are no forces at infinity, which we formulate explicitly later. It is easy to check that any solution of (2.1) and

(2.2) can be presented as a sum of two solutions: a symmetric solution with uðx; y; tÞ, rxxðx; y; tÞ and ryyðx; y; tÞ
even in y and vðx; y; tÞ and rxyðx; y; tÞ odd in y, and an antisymmetric solution having vðx; y; tÞ and rxyðx; y; tÞ
even in y with uðx; y; tÞ, rxxðx; y; tÞ and ryyðx; y; tÞ odd in y. Symmetric solutions correspond to longitudinal

vibrations, antisymmetric solutions to flexural vibrations. In this paper we will discuss only dynamic loads
causing purely longitudinal vibrations. In this case, fxxðyÞ and gxxðyÞ are even functions of y while fxyðyÞ and
gxyðyÞ are odd functions.

Following Lamb (1916), we seek such solutions of (2.1) and (2.2) that each unknown function has the

form of a function of y multiplied by eiðkx�xtÞ. It is convenient to write the equations in dimensionless form

by introducing dimensionless stresses r0
xx, r0

yy and r0
xy , coordinates x0, y0 and displacements u0, v0 by the

relations

r0
xx ¼

rxx

l
; r0

yy ¼
ryy

l
; r0

xy ¼
rxy

l
; x0 ¼ x

h
; y0 ¼ y

h
; u0 ¼ u

h
; v0 ¼ v

h
ð2:6Þ

Accordingly dimensionless quantities frequency X, time t0 and wave number k0 are defined as

X2 ¼ qh2x2

l
; t0 ¼ t

h

ffiffiffi
l
q

r
and k0 ¼ kh ð2:7Þ

In what follows we omit the primes. Eqs. (2.1) and (2.2) take the form:

ikrxx þ
orxy

oy
þ X2u ¼ 0

ikrxy þ
oryy

oy
þ X2v ¼ 0

ð2:8Þ

rxx ¼
k
l

iku
�

þ ov
oy

�
þ 2iku

ryy ¼
k
l

iku
�

þ ov
oy

�
þ 2

ov
oy

rxy ¼ ikvþ ou
oy

ð2:9Þ

Eqs. (2.8) and (2.9) with free boundary conditions (2.3) determine an eigenvalue problem for the parameter

k, dependent on the assigned frequency X. The corresponding operator is not self-adjoint, thus k is complex

while the eigenfunctions are not orthogonal. The latter causes all the difficulties in establishing the extension

of Saint-Venant�s principle to dynamic loading.
Substitution from the three stress equations (2.9), into the momentum equations (2.8) yields two

equations in terms of the displacements only:
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i
k

1� 2m
ov
oy

þ X2

�
� 2

1� m
1� 2m

k2 þ o2

oy2

�
u ¼ 0

X2

�
� k2 þ 2

1� m
1� 2m

o2

oy2

�
vþ i

k
1� 2m

ou
oy

¼ 0

ð2:10Þ

where m ¼ ðk=2ðk þ lÞÞ is Poisson�s ratio. This is a system of two ordinary differential equations with

constant coefficients. Thus a generic form for the solution is

u ¼ u0eay ; v ¼ v0eay ð2:11Þ

with u0, v0 being some constants.
Substituting (2.11) in Eqs. (2.10), we obtain the system of two linear equations with respect to u0, v0:

X2 � 2
1� m
1� 2m

k2 þ a2 i
k

1� 2m

i
k

1� 2m
X2 � k2 þ 2

1� m
1� 2m

a2

2
664

3
775 


u0
v0

� 

¼ 0 ð2:12Þ

For a non-trivial solution, the determinant of the coefficient matrix in (2.12) must be zero. The determinant

can be presented in the form

ðk2 � a2 � X2Þ k2
�

� a2 � 1� 2m
ð2� 2mÞX2

�
¼ 0 ð2:13Þ

We see that there are four possible values of a which depend on k and X. We denote one pair of the roots by
�a and the second pair by �b,

a2 ¼ k2 � 1� 2m
2� 2m

X2; b2 ¼ k2 � X2 ð2:14Þ

Since there are two values of a and two values of b, the general solution has four arbitrary constants. It is

convenient to use hyperbolic functions as the basis functions instead of exponential and write the general
solution as

u ¼ A cosh ay þ B cosh by þ C sinh ay þ D sinh by ð2:15Þ

Then from Eqs. (2.12), we obtain the displacement v

v ¼ �i
a
k
A sinh ay � i

k
b
B sinh by � i

a
k
C cosh ay � i

k
b
D cosh by ð2:16Þ

3. Solutions for symmetric loading

For the symmetric solutions, C ¼ D ¼ 0. Now we take into account the free boundary conditions. It is
convenient to redefine the other two constants by substituting ikA for A and Bb for B.

u ¼ ikA cosh ay þ Bb cosh by

v ¼ aA sinh ay � ikB sinh by
ð3:1Þ

By substitution for these displacements in the stress equations (2.9) and using the definitions of the
parameters a and b (2.14), we obtain
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rxx ¼ Aðb2 � k2 � 2a2Þ cosh ay þ 2bBik cosh by

ryy ¼ Aðk2 þ b2Þ cosh ay � 2bBik cosh by

rxy ¼ 2aAik sinh ay þ ðb2 þ k2ÞB sinh by

ð3:2Þ

The free boundary conditions (2.3), using (3.2), yield two relations for the ratio of the constants A and B

A
B
¼ 2bik cosh b

cosh aðk2 þ b2Þ
;

A
B
¼ iðb2 þ k2Þ sinh b

2ak sinh a
ð3:3Þ

The consistency of these equations, yields the dispersion equation

tanh b
tanh a

¼ 4k2ab

ðk2 þ b2Þ2
ð3:4Þ

Setting B ¼ 1 and determining A from (3.3), we find the fundamental solution of the problem for each

branch, as the related displacements and stresses

uðy; kÞ ¼ ðb2 þ k2Þ sinh b
2a sinh a

cosh ay þ b cosh by

vðy; kÞ ¼ iðb2 þ k2Þ sinh b
2k sinh a

sinh ay � ik sinh by

rxxðy; kÞ ¼
iðb2 þ k2Þ sinh b

2ak sinh a
ðb2 � k2 � 2a2Þ cosh ay þ 2bik cosh by

ryyðy; kÞ ¼
cosh b cosh ay

cosh a

�
� cosh by

�
2bik

rxyðy; kÞ ¼
� sinh b
sinh a

sinh ay
�

þ sinh by
�
ðb2 þ k2Þ

ð3:5Þ

The wave number k is a function of the frequency X, as determined from the dispersion equation (3.4). The

first five branches of the dispersion equation (3.4) for small X are shown in Fig. 3. For consistency with

Fig. 3. Roots of dispersion equation vs. frequency, branches 0–4.
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other authors, we plot the dimensionless frequency X2
0 ¼ ðqh2x2=ðk þ 2lÞÞ. The branches shown corres-

pond to the non-growing solutions, related to Imk > 0. There are also branches symmetric with respect to

the plane Rek ¼ 0, obtained by replacing k by its negative conjugate ��kk. We will number all the branches

for small X, attaching index 0 to the penetrating branch and indices 1; 2; . . . to branches with increasing jkj
for Rek > 0, and indices �11; �22; . . . to the symmetric branches with Rek < 0. For the ath branch, ka is a

function of X. According to (2.14), a and b area also functions of X. For definiteness when determining a
and b from (2.14) as

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 1� 2n

2� 2n
W 2

r
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � X2

p

we choose the branch of the square root
ffiffi
z

p
which obeys the rule að�k;XÞ ¼ aðk;XÞ, bð��kk;XÞ ¼ bðk;XÞ:

4. Series expansion

For the ath branch there are two real solutions, which are the real and imaginary parts (denoted by
prime and double prime respectively) of the time dependent physical quantities. For the axial displacement,

for example, these are denoted by u0aðx; y; tÞ and u00aðx; y; tÞ. They are derived from the fundamental solution

(3.5) and the equation

uðx; y; t; kaÞ ¼ uðy; kaÞeiðkax�XtÞ ¼ u0aðx; y; tÞ þ iu00aðx; y; tÞ ð4:1Þ

Similarly

vðx; y; t; kaÞ ¼ vðy; kaÞeiðkax�XtÞ ¼ v0aðx; y; tÞ þ iv00aðx; y; tÞ
rxxðx; y; t; kaÞ ¼ rxxðy; kaÞeiðkax�XtÞ ¼ r0

xx aðx; y; tÞ þ ir00
xx aðx; y; tÞ

ryyðx; y; t; kaÞ ¼ ryyðy; kaÞeiðkax�XtÞ ¼ r0
yy aðx; y; tÞ þ ir00

yy aðx; y; tÞ
rxyðx; y; t; kaÞ ¼ rxyðy; kaÞeiðkax�XtÞ ¼ r0

xy aðx; y; tÞ þ ir00
xy aðx; y; tÞ

From (4.1), the axial displacement components are:

u0aðx; y; tÞ ¼ ðu0ðy; kaÞ cosðk0ax� XtÞ � u00ðy; kaÞ sinðk0ax� XtÞÞe�k00a x

u00aðx; y; tÞ ¼ ðu0ðy; kaÞ sinðk0ax� XtÞ þ u00ðy; kaÞ cosðk0ax� XtÞÞe�k00a x
ð4:2Þ

Similar formulas for the other physical quantities follow from (4.1). For the branches associated with the

conjugate roots of the dispersion equation ��kk, we have uð�k;XÞ ¼ uðk;XÞ, vð��kk;XÞ ¼ vðk;XÞ therefore

u0�aaðx; y; tÞ ¼ ðu0ðy; kaÞ cosðk0axþ XtÞ � u00ðy; kaÞ sinðk0axþ XtÞÞe�k00a x

u00�aaðx; y; tÞ ¼ ð�u0ðy; kaÞ sinðk0axþ XtÞ � u00ðy; kaÞ cosðk0axþ XtÞÞe�k00a x
ð4:3Þ

Again, similar formulas for the other physical quantities follow from (4.1) So, we have, for each branch

with complex values for k, four independent real solutions. There are two penetrating branches with real

wave numbers k and �k. They correspond to the waves running to the right and left respectively. We

assume that here are no waves coming from infinity. Thus only one penetrating branch, that with positive k,
should be taken into account. It generates two real independent solutions. It is easy to see that for small
values of X, a is real while b is pure imaginary. Thus, for the penetrating branch

u0ðy; k0Þ ¼ v00ðy; k0Þ ¼ r00
xxðy; k0Þ ¼ r00

yyðy; k0Þ ¼ r0
xyðy; k0Þ ¼ 0 ð4:4Þ
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The two real independent solutions for the longitudinal displacements are

u00ðx; y; tÞ ¼ �u00ðy; k0Þ sinðk00x� XtÞ
u000ðx; y; tÞ ¼ u00ðy; k0Þ cosðk00x� XtÞ

ð4:5Þ

For each value of W , we may seek the solution of the boundary value problem in the form of series with

respect to the obtained partial solutions. For example, for the axial component of displacements one can

write

uðx; y; tÞ ¼ �A0u00ðy; k0Þ sinðk00x� XtÞ þ B0u00ðy; k0Þ cosðk00x� XtÞ

þ
X1
a¼1

½Aau0aðx; y; tÞ þ Bau00aðx; y; tÞ� þ
X1
�aa¼1

½Cau0�aaðx; y; tÞ þ Dau00�aaðx; y; tÞ� ð4:6Þ

At the edge x ¼ 0, using (4.2)–(4.5), this becomes

uð0; y; tÞ ¼ A0u00xxðy; k0Þ sinXt þ B0u00xxðy; k0Þ cosXt þ
X1
a¼1

½ðAa þ CaÞu0xxðy; kaÞ þ ðBa � DaÞu00xxðy; kaÞ� cosXt

þ
X1
a¼1

½ðAa � CaÞu00xxðy; kaÞ � ðBa þ DaÞu0xxðy; kaÞ� sinXt ð4:7Þ

Similar formulas and expansions hold for the other fields.

The coefficients A0, B0, Aa, Ba, Ca, Da should be found from the boundary conditions (2.4) and (2.5). Let

us write down these conditions explicitly in terms of the unknown coefficients.

A0r
0
xxðy; k0Þ þ

X1
a¼1

ðAa þ CaÞr0
xxðy; kaÞ þ ðBa � DaÞðr00

xxðy; kaÞÞ ¼ fxxðyÞ

� B0r
0
xxðy; k0Þ þ

X1
a¼1

�ðBa þ DaÞr0
xxðy; kaÞ þ ðAa � CaÞr00

xxðy; kaÞ ¼ gxxðyÞ

B0r
00
xyðy; k0Þ þ

X1
a¼1

ðAa þ CaÞr0
xyðy; kaÞ þ ðBa � DaÞr00

xyðy; kaÞ ¼ fxyðyÞ

A0r
00
xyðy; k0Þ þ

X1
a¼1

�ðBa þ DaÞr0
xyðy; kaÞ þ ðAa � CaÞr00

xyðy; kaÞ ¼ gxyðyÞ

ð4:8Þ

The penetrating stress for the given applied load may be computed from (4.8) by determining the coeffi-

cients A0 and B0. The basic functions in this expansion, r0
xxðy; kaÞ, r00

xxðy; kaÞ, r0
xyðy; kaÞ and r00

xyðy; kaÞ look, to
some extent, similar to the basic functions of a Fourier series. They are shown for each of the first five

branches, normalized by the maximum amplitude of the real part of the axial stress in each branch, in Fig.
4–7, for a frequency X0 ¼ 0:3. At this frequency, the associated values of k are

Branch Re k Im k

0 0.319 0

1 1.129 2.058

2 1.553 5.359

3 1.776 8.526

4 1.930 11.691
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Fig. 4. Real part of the axial stress Eq. (3.5) vs. distance across strip for the first five symmetric branches, normalized by the amplitude

of the maximum axial stress.
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Fig. 5. Imaginary part of the axial stress Eq. (3.5) vs. distance across strip for the first five symmetric branches, normalized by the

amplitude of the maximum axial stress.
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Fig. 7. Imaginary part of the shear stress Eq. (3.5) vs. distance across strip for the first five symmetric branches, normalized by the

amplitude of the maximum axial stress.
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Fig. 6. Real part of the shear stress Eq. (3.5) vs. distance across strip for the first five symmetric branches, normalized by the amplitude

of the maximum axial stress.
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5. Probabilistic model and results for symmetric loading

We intend to find from the system of Eqs. (4.8) the coefficients A0, B0 which specify the magnitude of the

penetrating stress state. We assume that the load is self-equilibrated. Due to the symmetry properties of the
problem for a self-equilibrated load, functions fxxðyÞ and gxxðyÞ must obey the conditionsZ 1

�1

fxxðyÞdy ¼
Z 1

�1

gxxðyÞdy ¼ 0 ð5:1Þ

while functions fxyðyÞ, gxyðyÞ inherently satisfy the self-equilibrated load condition. If nothing is known

about the self-equilibrated load, then nothing can be said about the penetrating stress state. We are going to

provide probabilistic information about the self-equilibrated load and seek the probabilistic characteristics

of the penetrating stress state. The problem can be considerably simplified if we note that there should be a

one-to-one correspondence between the coefficients A0, B0, Aa, Ba, Ca, Da and the functions fxxðyÞ, fxyðyÞ,
gxxðyÞ and gxyðyÞ. The two conditions (5.1) serve to specify the values of A0 and B0.

Absence of knowledge of fxxðyÞ, fxyðyÞ, gxxðyÞ and gxyðyÞ corresponds to the absence of knowledge of the
coefficients Aa, Ba, Ca and Da. Therefore, instead of prescribing a probabilistic model for fxxðyÞ, fxyðyÞ, gxxðyÞ
and gxyðyÞ, one can give a probabilistic model for the coefficients Aa, Ba, Ca and Da. We assume in what

follows that these coefficients are independent Gaussian random variables with zero mean and unit vari-

ances. Then the coefficients A0 and B0 determined from (5.1) as linear functions of Aa, Ba, Ca and Da are also

Gaussian variables with zero mean, at least if we keep in the series a finite number of terms.

The degree to which Saint-Venant�s principle is violated may be characterized by the ratio h of the

maximum penetrating stress to the maximum value of the stress at the loaded end.

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 þ B2

0

p
maxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
xxðy; k0Þ

2 þ 2r00
xyðy; k0Þ

2 þ r0
yyðy; k0Þ

2
q

maxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxxðyÞ2 þ gxxðyÞ2 þ 2fxyðyÞ2 þ 2gxyðyÞ2 þ fyyðyÞ2 þ gyyðyÞ2

q ð5:2Þ

where fyyðyÞ cosXt þ gyyðyÞ sinXt is the yy-component of the stress tensor at x ¼ 0. If the self-equilibrated

load at the beam end is of the same order as the non-equilibrated one then h may serve as a measure of the
error induced by using Saint-Venant�s principle in dynamical problems. Ratio h is a random variable. Its

properties were determined numerically by running a Monte-Carlo analysis, where for each of 250 cal-

culation the coefficients Aa, Ba, Ca and Da were randomly selected from a set of Gaussian variables with zero

mean and variance of unity. One may expect that, for each frequency, h is bounded and has some maximum

value. Therefore the beta distribution may be tried to smooth the histogram of the numerical results. For a

random variable whose values lie between zero and one, the beta distribution has a probability density pðxÞ
given by

pðxÞ ¼
1

Bða; bÞ x
a�1ð1� xÞb�1

0 < x6 1

0 otherwise

8<
:

9=
; ð5:3Þ

where the constant Bða; bÞ which normalizes the distribution can be expressed in terms of the C-function, as

Bða; bÞ ¼
Z 1

0

xa�1ð1� xÞb�1
dx ¼ CðaÞCðbÞ

Cðaþ bÞ ð5:4Þ

For a random variable with the set of possible values in some finite interval ½0; d� the beta distribution

should be scaled accordingly. The mean value of the variable x on the segment ½0; d� is

�xx
0 ¼ d

a
aþ b

ð5:5Þ
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The beta distribution approximation for the probability density of h for two values of frequency is shown in

Fig. 8 as the solid lines. The computed values for the parameters a and b were nearly constant across all

frequencies with X0 6 1:2, with a ¼ 2:4 and b ¼ 3:8. The increase in the average value �hh as frequency in-

creases correlates with increase in the parameter d.
The average value �hh as a function of frequency is depicted in Fig. 9, solid line. We see from Fig. 9 that

Saint-Venant�s principle produces average errors less than 7% if frequency X0 6 1:2. Note that this is an
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Fig. 8. Probability density function for the ratio of maximum penetrating stress to maximum end stress at two frequencies, in classical

theory (solid line with raw data dots) refined theory with boundary conditions (5.6) (dashed line) refined theory with boundary

conditions (5.7) (dash-dot line).
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average estimate: in fact, errors may be bigger than 7% for a particular load, as follows from the probability

distributions shown in Fig. 8.

Integrating the probability density function pðhÞ up to a certain given value H, one determines the
probability PðHÞ that error is less than H. Subtracting this value from unity gives the probability

QðHÞ ¼ 1� P ðHÞ that the error exceeds the certain value H. A graph of QðHÞ is given in Fig. 10 for the

frequencies X0 ¼ 0:6 and X0 ¼ 1:2. From these graphs we see that the probability of the error being greater

than 10% (i.e. H P 0:1) was 0.2 for a frequency X0 ¼ 1:2 but the probability of the error being greater than

1% is near zero for X0 ¼ 0:6.
The situation improves in the refined one-dimensional beam theories where a larger number of the end

conditions must be satisfied. For example, the theory by Berdichevsky and Le (1980) requires that, in

addition to the usual self-equilibrating condition
R 1

�1
rxx dy ¼ 0, the stresses must also obey the conditions

Z 1

�1

rxx cos py dy ¼ 0 and

Z 1

�1

rxy sin
py
2

dy ¼ 0: ð5:6Þ

Thus, in the Berdichevsky–Le theory we have, in addition to (5.1), the constraints:

Z 1

�1

fxx cos py dy ¼
Z 1

�1

gxx cos py dy ¼
Z 1

�1

fxy sin
p
2
y dy ¼

Z 1

�1

gxy sin
p
2
y dy ¼ 0

They are satisfied by determining the coefficients A1, B1, C1, D1 of the series expansion in addition to A0, B0.

Undetermined coefficients are assumed as before, statistically independent Gaussian random variables with
zero mean and unit variance. The average values of �hh vs. frequency is shown in Fig. 9, dash line. The dent in
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Fig. 9. Mean value of the ratio of maximum penetrating stress to maximum end stress vs. frequency in classical theory (solid line)

refined theory with boundary conditions (5.6) (dashed line) refined theory with boundary conditions (5.7) (dash-dot line).
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the curve corresponds to the edge resonance effect which occurs at a frequency X0 ¼ 1:3. This resonance is
also documented by Gregory and Gladwell (1983). The average error does not exceed 9% anywhere in the

frequency range considered, X0 6 1:44. The probability distribution of h for the Berdichevsky–Le theory is

shown in Fig. 8, dash line. The computed values for the parameters a and bwere again nearly constant across

all frequencies where X0 6 1:2, with a ¼ 2:4 and b ¼ 3:8. As the frequency approached that of the edge

resonance effect, both the parameters a and b showed a rapid increase, reaching a value of 15 at X0 ¼ 1:3,
then decreasing at the same rate as the frequency increased to X0 ¼ 1:44. From Fig. 10, dash line, we see that

the error will be less than 5% for a frequency W0 ¼ 1:2 and less than 0.3% at a frequency X0 ¼ 0:6.
Interestingly, a change of the weighting factor, so that the shear stress constraint conditionR 1

�1
rxy sinðpy=2Þdy ¼ 0 is replaced by

R 1

�1
rxy sin py dy ¼ 0 reduces the error further, as shown by the dash-

dot lines in Figs. 8–10. The reason is that the weighting factor sinðpy=2Þ came from consideration of the

first high frequency branch, while we here consider the frequency range where the lateral stress is ap-

proximated well by sin py.
In the numerical simulation which produced the quoted results, five modes from the entire series were

used. Further analysis showed that the presence of the higher harmonics of the self-equilibrated load
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Fig. 10. Probability QðHÞ that the ratio exceeds the value H at two frequencies classical theory (solid line) refined theory with boundary

conditions (5.6) (dashed line) refined theory with boundary conditions (5.7) (dash-dot line).
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distribution which are associated with higher mode numbers caused a reduction of the ratios h. To obtain

information on the effect of the number of branches, computations of the ratio for the case of Aa, Ba, Ca and

Da being Gaussian variables with zero mean and unit variance, for 16 a6 7 (i.e from 2 to 8 branches

including the propagating branch) showed that the ratio seems converging with increase in number of

branches considered. The results of the calculations and an exponentially fitted extrapolation to an infinite
number of branches is given in Fig. 11. From this, it is concluded that a smooth self-equilibrated load will

cause a larger ratio of propagated to applied stress than a highly irregular one, by about a factor of four.

The effect on the results of the sample size to be included in a Monte-Carlo analysis was studied, where

the number of branches involved were five. The estimated ratio of maximum propagated to maximum

applied stress was determined at four frequencies X0 ¼ 0:6, 1.1, 1.2 and 1.3. The values for the ratio when

50 samples were used were about 10% lower than when more than 150 samples were included. There was

less than 1% variation in the estimated ratio when 150, 250, 350 or 450 samples were included.

6. Conclusion

We have proposed an approach to describe quantitatively the violation of Saint-Venant�s principle in

dynamic problems. We used this approach to determine the probability that the error of classical engi-
neering theory exceeds certain levels for longitudinal vibrations of a two-dimensional semi-infinite strip. We
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Fig. 11. Average ratio of the maximum penetrating stress to the maximum applied stress vs. frequency for classical theory with just 2

branches involved (heavy solid line) with 3–8 branches involved (fainter lines) and an extrapolation to an infinite number of branches

(heavy dash line).
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quantify also the improvement achieved by the use of a refined engineering beam theory. For a dimen-

sionless frequency X0 ¼ 0:6 the error of classical theory was less than 1%, with overwhelming probability.

For frequency X0 ¼ 1:2 the probability of error to be 5% was considerable, about 0.7, the probability of the

error to be 10% was about 0.2, while the probability that the error exceeded 15% was negligible. Use of the
refined theory resulted in an error certainly less than 5% for X0 6 1:2. The numerical results were found to

depend on the measure used to represent the applied load. A more irregular applied load resulted in a

smaller error incurred from the use of engineering beam theory.
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